Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: application to piping erosion

Identifieur interne : 004A16 ( Main/Exploration ); précédent : 004A15; suivant : 004A17

Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: application to piping erosion

Auteurs : Franck Lominé [France] ; Luc Scholtès [France, Australie] ; Luc Sibille [France] ; Philippe Poullain [France]

Source :

RBID : ISTEX:70F925AA74852B813BCE734B01CB90AA33F83AC3

Descripteurs français

English descriptors

Abstract

In this article, we present a numerical method to deal with fluid–solid interactions and simulate particle–fluid systems as encountered in soils. This method is based on a coupling between two methods, now widely used in mechanics of granular media and fluid dynamics respectively: the discrete element (DE) method and the lattice Boltzmann (LB) method. The DE method is employed to model interactions between particles, whereas the LB method is used to describe an interstitial Newtonian fluid flow. The coupling presented here is a full one in the sense that particle motions act on fluid flow and reciprocally. This article presents in details each of the two methods and the principle of the coupling scheme. Determination of hydrodynamic forces and torques is also detailed, and the treatment of boundaries is explained. The coupled method is finally illustrated on a simple example of piping erosion, which puts in evidence that the combined LB–DE scheme constitutes a promising tool to study coupled problems in geomechanics. Copyright © 2011 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nag.1109


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: application to piping erosion</title>
<author>
<name sortKey="Lomine, Franck" sort="Lomine, Franck" uniqKey="Lomine F" first="Franck" last="Lominé">Franck Lominé</name>
</author>
<author>
<name sortKey="Scholtes, Luc" sort="Scholtes, Luc" uniqKey="Scholtes L" first="Luc" last="Scholtès">Luc Scholtès</name>
</author>
<author>
<name sortKey="Sibille, Luc" sort="Sibille, Luc" uniqKey="Sibille L" first="Luc" last="Sibille">Luc Sibille</name>
</author>
<author>
<name sortKey="Poullain, Philippe" sort="Poullain, Philippe" uniqKey="Poullain P" first="Philippe" last="Poullain">Philippe Poullain</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:70F925AA74852B813BCE734B01CB90AA33F83AC3</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/nag.1109</idno>
<idno type="url">https://api.istex.fr/document/70F925AA74852B813BCE734B01CB90AA33F83AC3/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001520</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001520</idno>
<idno type="wicri:Area/Istex/Curation">001520</idno>
<idno type="wicri:Area/Istex/Checkpoint">000326</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000326</idno>
<idno type="wicri:doubleKey">0363-9061:2013:Lomine F:modeling:of:fluid</idno>
<idno type="wicri:Area/Main/Merge">004B40</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:13-0238692</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000946</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005530</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000791</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000791</idno>
<idno type="wicri:doubleKey">0363-9061:2013:Lomine F:modeling:of:fluid</idno>
<idno type="wicri:Area/Main/Merge">004F65</idno>
<idno type="wicri:Area/Main/Curation">004A16</idno>
<idno type="wicri:Area/Main/Exploration">004A16</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: application to piping erosion</title>
<author>
<name sortKey="Lomine, Franck" sort="Lomine, Franck" uniqKey="Lomine F" first="Franck" last="Lominé">Franck Lominé</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>GeM laboratory, University of Nantes‐ECN‐CNRS IUT de St‐Nazaire, BP 420, 44606, Saint‐Nazaire Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Saint‐Nazaire</settlement>
</placeName>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
<author>
<name sortKey="Scholtes, Luc" sort="Scholtes, Luc" uniqKey="Scholtes L" first="Luc" last="Scholtès">Luc Scholtès</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>GeM laboratory, University of Nantes‐ECN‐CNRS IUT de St‐Nazaire, BP 420, 44606, Saint‐Nazaire Cedex</wicri:regionArea>
<wicri:noRegion>44606, Saint‐Nazaire Cedex</wicri:noRegion>
<wicri:noRegion>Saint‐Nazaire Cedex</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSIRO, QCAT‐1 Technology Court, QLD, 4069, Pullenvale</wicri:regionArea>
<wicri:noRegion>Pullenvale</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sibille, Luc" sort="Sibille, Luc" uniqKey="Sibille L" first="Luc" last="Sibille">Luc Sibille</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>GeM laboratory, University of Nantes‐ECN‐CNRS IUT de St‐Nazaire, BP 420, 44606, Saint‐Nazaire Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Pays de la Loire</region>
<settlement type="city">Saint‐Nazaire</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Poullain, Philippe" sort="Poullain, Philippe" uniqKey="Poullain P" first="Philippe" last="Poullain">Philippe Poullain</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>GeM laboratory, University of Nantes‐ECN‐CNRS IUT de St‐Nazaire, BP 420, 44606, Saint‐Nazaire Cedex</wicri:regionArea>
<wicri:noRegion>44606, Saint‐Nazaire Cedex</wicri:noRegion>
<wicri:noRegion>Saint‐Nazaire Cedex</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">International Journal for Numerical and Analytical Methods in Geomechanics</title>
<title level="j" type="alt">INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS</title>
<idno type="ISSN">0363-9061</idno>
<idno type="eISSN">1096-9853</idno>
<imprint>
<biblScope unit="vol">37</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="577">577</biblScope>
<biblScope unit="page" to="596">596</biblScope>
<biblScope unit="page-count">20</biblScope>
<date type="published" when="2013-04-25">2013-04-25</date>
</imprint>
<idno type="ISSN">0363-9061</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0363-9061</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anal</term>
<term>Analytical methods</term>
<term>Application</term>
<term>Boltzmann</term>
<term>Boltzmann equation</term>
<term>Boundary</term>
<term>Boundary condition</term>
<term>Boundary conditions</term>
<term>Boundary link</term>
<term>Boundary links</term>
<term>Boundary nodes</term>
<term>Cellular automata</term>
<term>Channel height</term>
<term>Civil engineering</term>
<term>Collision operator</term>
<term>Collision step</term>
<term>Compressibility error</term>
<term>Computation cost</term>
<term>Computational cost</term>
<term>Copyright</term>
<term>Corner node</term>
<term>Corner nodes</term>
<term>Couples method</term>
<term>Coupling</term>
<term>Critical shear stress</term>
<term>Critical time step</term>
<term>Different values</term>
<term>Discrete element</term>
<term>Discrete element method</term>
<term>Distribution function</term>
<term>Distribution functions</term>
<term>Dtde</term>
<term>Equilibrium function</term>
<term>Equilibrium functions</term>
<term>Erosion</term>
<term>Erosion rate</term>
<term>Europhysics letters</term>
<term>Fluid</term>
<term>Geomech</term>
<term>Granular</term>
<term>Granular assembly</term>
<term>Granular material</term>
<term>Granular materials</term>
<term>Granular media</term>
<term>Granular skeleton</term>
<term>Hole boundary</term>
<term>Hole diameter</term>
<term>Hole erosion test</term>
<term>Hydraulic</term>
<term>Hydraulic gradient</term>
<term>Hydraulic loading</term>
<term>Hydraulic shear stress</term>
<term>Hydrodynamic</term>
<term>Hydrodynamic forces</term>
<term>Hydrodynamics</term>
<term>International journal</term>
<term>John wiley sons</term>
<term>Kinetic theory</term>
<term>Lattice</term>
<term>Lattice Boltzmann model</term>
<term>Lattice boltzmann</term>
<term>Lattice boltzmann equation</term>
<term>Lattice boltzmann method</term>
<term>Lattice boltzmann simulation</term>
<term>Lattice boltzmann simulations</term>
<term>Lattice nodes</term>
<term>Lattice spacing</term>
<term>Lattice velocity</term>
<term>Lomin</term>
<term>Meth</term>
<term>Modeling</term>
<term>Momentum exchange</term>
<term>Momentum transfer</term>
<term>Nearest node</term>
<term>Node</term>
<term>Nonequilibrium part</term>
<term>Numer</term>
<term>Numerical method</term>
<term>Numerical methods</term>
<term>Numerical model</term>
<term>Numerical simulation</term>
<term>Numerical simulations</term>
<term>Other hand</term>
<term>Particle</term>
<term>Particle distribution function</term>
<term>Particle distribution functions</term>
<term>Particle motion</term>
<term>Particles move</term>
<term>Physical review</term>
<term>Physical review letters</term>
<term>Pipe surface</term>
<term>Pipe walls</term>
<term>Pipe width</term>
<term>Piping erosion</term>
<term>Pore space</term>
<term>Pressure boundary conditions</term>
<term>Pressure gradient</term>
<term>Promising tool</term>
<term>Propagation step</term>
<term>Rectangular channel</term>
<term>Relaxation time</term>
<term>Relevant parameters</term>
<term>Same procedure</term>
<term>Same time</term>
<term>Shear stress</term>
<term>Shear stresses</term>
<term>Simple example</term>
<term>Simulation</term>
<term>Simulation model</term>
<term>Soil interaction</term>
<term>Soil particles</term>
<term>Soil pipe</term>
<term>Soil water properties</term>
<term>Solid boundary</term>
<term>Solid boundary nodes</term>
<term>Solid obstacle</term>
<term>Solid obstacles</term>
<term>Solid particle</term>
<term>Solid particles</term>
<term>Square lattice</term>
<term>Statistical physics</term>
<term>System boundaries</term>
<term>Tangent contact plane</term>
<term>Time correlation functions</term>
<term>Time integration</term>
<term>Time step</term>
<term>Time step dtde</term>
<term>Time steps</term>
<term>Total hydrodynamic force</term>
<term>Total mass</term>
<term>Transport phenomena</term>
<term>Unit area</term>
<term>Unknown distribution functions</term>
<term>Unknown distributions</term>
<term>Velocity boundary conditions</term>
<term>Wide range</term>
<term>Yade</term>
<term>Yade documentation</term>
<term>Yade project</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Application</term>
<term>Couplage</term>
<term>Erosion</term>
<term>Fluide</term>
<term>Hydrodynamique</term>
<term>Interaction sol</term>
<term>Matériau granulaire</term>
<term>Modèle Boltzmann sur réseau</term>
<term>Modèle simulation</term>
<term>Modélisation</term>
<term>Mouvement particule</term>
<term>Méthode élément discret</term>
<term>Propriété hydrique sol</term>
<term>Simulation numérique</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Anal</term>
<term>Analytical methods</term>
<term>Boltzmann</term>
<term>Boltzmann equation</term>
<term>Boundary</term>
<term>Boundary condition</term>
<term>Boundary conditions</term>
<term>Boundary link</term>
<term>Boundary links</term>
<term>Boundary nodes</term>
<term>Cellular automata</term>
<term>Channel height</term>
<term>Civil engineering</term>
<term>Collision operator</term>
<term>Collision step</term>
<term>Compressibility error</term>
<term>Computation cost</term>
<term>Computational cost</term>
<term>Copyright</term>
<term>Corner node</term>
<term>Corner nodes</term>
<term>Couples method</term>
<term>Critical shear stress</term>
<term>Critical time step</term>
<term>Different values</term>
<term>Discrete element</term>
<term>Distribution function</term>
<term>Distribution functions</term>
<term>Dtde</term>
<term>Equilibrium function</term>
<term>Equilibrium functions</term>
<term>Erosion</term>
<term>Erosion rate</term>
<term>Europhysics letters</term>
<term>Geomech</term>
<term>Granular</term>
<term>Granular assembly</term>
<term>Granular materials</term>
<term>Granular media</term>
<term>Granular skeleton</term>
<term>Hole boundary</term>
<term>Hole diameter</term>
<term>Hole erosion test</term>
<term>Hydraulic</term>
<term>Hydraulic gradient</term>
<term>Hydraulic loading</term>
<term>Hydraulic shear stress</term>
<term>Hydrodynamic</term>
<term>Hydrodynamic forces</term>
<term>International journal</term>
<term>John wiley sons</term>
<term>Kinetic theory</term>
<term>Lattice</term>
<term>Lattice boltzmann</term>
<term>Lattice boltzmann equation</term>
<term>Lattice boltzmann method</term>
<term>Lattice boltzmann simulation</term>
<term>Lattice boltzmann simulations</term>
<term>Lattice nodes</term>
<term>Lattice spacing</term>
<term>Lattice velocity</term>
<term>Lomin</term>
<term>Meth</term>
<term>Modeling</term>
<term>Momentum exchange</term>
<term>Momentum transfer</term>
<term>Nearest node</term>
<term>Node</term>
<term>Nonequilibrium part</term>
<term>Numer</term>
<term>Numerical method</term>
<term>Numerical methods</term>
<term>Numerical model</term>
<term>Numerical simulations</term>
<term>Other hand</term>
<term>Particle</term>
<term>Particle distribution function</term>
<term>Particle distribution functions</term>
<term>Particles move</term>
<term>Physical review</term>
<term>Physical review letters</term>
<term>Pipe surface</term>
<term>Pipe walls</term>
<term>Pipe width</term>
<term>Piping erosion</term>
<term>Pore space</term>
<term>Pressure boundary conditions</term>
<term>Pressure gradient</term>
<term>Promising tool</term>
<term>Propagation step</term>
<term>Rectangular channel</term>
<term>Relaxation time</term>
<term>Relevant parameters</term>
<term>Same procedure</term>
<term>Same time</term>
<term>Shear stress</term>
<term>Shear stresses</term>
<term>Simple example</term>
<term>Simulation</term>
<term>Soil particles</term>
<term>Soil pipe</term>
<term>Solid boundary</term>
<term>Solid boundary nodes</term>
<term>Solid obstacle</term>
<term>Solid obstacles</term>
<term>Solid particle</term>
<term>Solid particles</term>
<term>Square lattice</term>
<term>Statistical physics</term>
<term>System boundaries</term>
<term>Tangent contact plane</term>
<term>Time correlation functions</term>
<term>Time integration</term>
<term>Time step</term>
<term>Time step dtde</term>
<term>Time steps</term>
<term>Total hydrodynamic force</term>
<term>Total mass</term>
<term>Transport phenomena</term>
<term>Unit area</term>
<term>Unknown distribution functions</term>
<term>Unknown distributions</term>
<term>Velocity boundary conditions</term>
<term>Wide range</term>
<term>Yade</term>
<term>Yade documentation</term>
<term>Yade project</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Génie civil</term>
<term>Droit d'auteur</term>
<term>érosion</term>
<term>Simulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">In this article, we present a numerical method to deal with fluid–solid interactions and simulate particle–fluid systems as encountered in soils. This method is based on a coupling between two methods, now widely used in mechanics of granular media and fluid dynamics respectively: the discrete element (DE) method and the lattice Boltzmann (LB) method. The DE method is employed to model interactions between particles, whereas the LB method is used to describe an interstitial Newtonian fluid flow. The coupling presented here is a full one in the sense that particle motions act on fluid flow and reciprocally. This article presents in details each of the two methods and the principle of the coupling scheme. Determination of hydrodynamic forces and torques is also detailed, and the treatment of boundaries is explained. The coupled method is finally illustrated on a simple example of piping erosion, which puts in evidence that the combined LB–DE scheme constitutes a promising tool to study coupled problems in geomechanics. Copyright © 2011 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Pays de la Loire</li>
</region>
<settlement>
<li>Saint‐Nazaire</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Pays de la Loire">
<name sortKey="Lomine, Franck" sort="Lomine, Franck" uniqKey="Lomine F" first="Franck" last="Lominé">Franck Lominé</name>
</region>
<name sortKey="Lomine, Franck" sort="Lomine, Franck" uniqKey="Lomine F" first="Franck" last="Lominé">Franck Lominé</name>
<name sortKey="Poullain, Philippe" sort="Poullain, Philippe" uniqKey="Poullain P" first="Philippe" last="Poullain">Philippe Poullain</name>
<name sortKey="Scholtes, Luc" sort="Scholtes, Luc" uniqKey="Scholtes L" first="Luc" last="Scholtès">Luc Scholtès</name>
<name sortKey="Sibille, Luc" sort="Sibille, Luc" uniqKey="Sibille L" first="Luc" last="Sibille">Luc Sibille</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Scholtes, Luc" sort="Scholtes, Luc" uniqKey="Scholtes L" first="Luc" last="Scholtès">Luc Scholtès</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004A16 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004A16 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:70F925AA74852B813BCE734B01CB90AA33F83AC3
   |texte=   Modeling of fluid–solid interaction in granular media with coupled lattice Boltzmann/discrete element methods: application to piping erosion
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024